吾爱破解软件站

 找回密码
 立即注册
开启左侧

几本AIEngineeringB

[复制链接]
画画 发表于 1 小时前 | 显示全部楼层 |阅读模式
[img]https://linux.do/uploads/default/original/4X/8/4/b/84b4b3c96539e0d8d03134f9d4eb4bde33d45e81.jpeg<br>https://linux.do/uploads/default ... 5e81_2_400x500.jpeg[/img]

链接: 百度网盘 提取码: hj7m AI Engineering: Building Applications with Foundation Models by Chip Huyen: This book is frequently cited as a foundational text, covering the process of building applications using readily available foundation models and how it differs from traditional ML engineering. Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications by Chip Huyen: Often considered complementary to the above, this book focuses on designing scalable, reliable, and maintainable ML systems, from data handling to deployment and monitoring. LLM Engineer’s Handbook: Master the Art of Engineering Large Language Models from Concept to Production by Paul Iusztin & Maxime Labonne: This book offers practical guidance and “recipes” for moving Large Language Model (LLM) projects from prototype to production. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien Géron: Praised for its practical approach, this guide covers core ML and deep learning concepts with real-world examples and popular Python libraries. Build a Large Language Model (From Scratch) by Sebastian Raschka: This book is recommended for gaining a deep, fundamental understanding of how LLMs work internally by building one from the ground up. Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Often referred to as the “bible” of modern AI foundations, this provides a comprehensive mathematical and conceptual background for deep learning. Prompt Engineering for LLMs by John Berryman & Albert Ziegler: These titles cover techniques for optimizing prompts and model outputs, a critical skill in modern AI development. The AI Engineering Bible by Thomas D. Caldwell: Positioned as a comprehensive reference for contemporary AI engineering practices. Designing Data-Intensive Applications by Martin Kleppmann: Though not exclusively an AI book, it is highly recommended for building scalable and reliable data systems, which is crucial infrastructure for production AI. 3

更多资料请搜索AI综合资料分享中心(智能体):

夸克链接: https://pan.baidu.com/s/16NhiKdlFdUonHxvcDgakhQ

更多资料请搜索AI综合资料分享中心(智能体):http://youhuasdyy.cn/

================================
(每日分享)教育资源合集(幼儿)https://pan.quark.cn/s/7874ce6eda4c
(每日分享)教育资源合集(小学)https://pan.quark.cn/s/cef036d70c9a
(每日分享)教育资源合集(初中)https://pan.quark.cn/s/f23f43019b3e
(每日分享)教育资源合集(高中)https://pan.quark.cn/s/5be5155408c4
(每日分享)设计素材模板合集 https://pan.quark.cn/s/9bb2183818f4
(每日分享)小说合集 https://pan.quark.cn/s/e5ffebf2dc08
(每日分享)漫画合集 https://pan.quark.cn/s/c1bf77274f74
(每日分享)有声读物合集 https://pan.quark.cn/s/0cce76b31516
(每日分享)生活娱乐日常常识资料 https://pan.quark.cn/s/2d5b1971d8f2
(每日分享)手机软件合集 https://pan.quark.cn/s/dbbd31d627d4
(每日分享)电脑软件合集 https://pan.quark.cn/s/b0d2e85857d3
(每日分享)AI类教程合集资料https://pan.quark.cn/s/a2d9c8c60783
(每日分享)计算机编程类教程合集https://pan.quark.cn/s/bb4fc071ed06
(每日分享)自媒体教程合集资料https://pan.quark.cn/s/2ec0f7c89ba5
(每日分享)游戏资源合集(手机)https://pan.quark.cn/s/9db7b6beb378
(每日分享)游戏资源合集(电脑)https://pan.quark.cn/s/7d15e104b776
(每日分享)网赚项目资源合集https://pan.quark.cn/s/df566ff277ae
百度网盘网赚教程合集(提取码:pdbk)https://pan.baidu.com/s/1OTzE10CxVN18tkCZbzhbDw?pwd=pdbk
(每日分享)图片壁纸 https://pan.quark.cn/s/defba653fce8
(每日分享)音乐MV资源合集 https://pan.quark.cn/s/e050ee714063
(每日分享)考公合集 https://pan.quark.cn/s/383e4e5191f1
(每日分享)B站充电VIP视频合集 https://pan.quark.cn/s/88bc1f42b7e8
吾爱破解软件站欢迎你!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|吾爱破解软件站

GMT+8, 2026-1-3 08:18 , Processed in 0.038370 second(s), 14 queries .

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表